暴趣科技网
您的当前位置:首页2007AMC12-Asolutions

2007AMC12-Asolutions

来源:暴趣科技网
The MATheMATICAL ASSOCIATION Of AMeRICA

american Mathematics Competitions

58th Annual American Mathematics Contest 12

AMC 12 Contest A

Solutions Pamphlet

Tuesday, FEBRUARY 6, 2007

This Pamphlet gives at least one solution for each problem on this year’s contest and shows that all problems can be solved without the use of a calculator. When more than one solution is provided, this is done to illustrate a significant contrast in methods, e.g., algebraic vs geometric, computational vs conceptual, elementary vs advanced. These solu-tions are by no means the only ones possible, nor are they superior to others the reader may devise.

We hope that teachers will inform their students about these solutions, both as illustrations of the kinds of ingenuity needed to solve nonroutine problems and as examples of good mathematical exposition. However, the publication, reproduction or communication of the problems or solutions of the AMC 12 during the period when students are eligible to participate seriously jeopardizes the integrity of the results. Dissemination via copier, telephone, e-mail, World Wide Web or media of any type during this period is a violation of the competition rules.After the contest period, permission to make copies of individual problems in paper or electronic form including posting on web-pages for educational use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear the copyright notice.Correspondence about the problems/solutions for this AMC 12 and orders for any publications should be addressed to: American Mathematics Competitions

University of Nebraska, P.O. Box 81606, Lincoln, NE 68501-1606

Phone: 402-472-2257; Fax: 402-472-6087; email: amcinfo@unl.edu

The problems and solutions for this AMC 12 were prepared by the MAA’s Committee on the

AMC 10 and AMC 12 under the direction of AMC 12 Subcommittee Chair:

Prof. David Wells, Department of MathematicsPenn State University, New Kensington, PA 15068

Copyright © 2007, The Mathematical Association of America

Solutions2007

58thAMC12A

2

1.Answer(C):Susanpays(4)(0.75)(20)=60dollars.Pampays(5)(0.70)(20)=70dollars,soshepays70−60=10moredollarsthanSusan.2.Answer(D):Thebrickhasavolumeof40·20·10=8000cubiccentimeters.Supposethatafterthebrickisplacedinthetank,thewaterlevelrisesbyhcentimeters.Thentheadditionalvolumeoccupiedintheaquariumis100·40·h=4000hcubiccentimeters.Sincethismustbethesameasthevolumeofthebrick,wehave

8000=4000handh=2centimeters3.Answer(A):Letthesmalleroftheintegersbex.Thenthelargerisx+2.Sox+2=3x,fromwhichx=1.Thusthetwointegersare1and3,andtheirsumis4.4.Answer(A):Katerodefor30minutes=1/2hourat16mph,sosherode8miles.Shewalkedfor90minutes=3/2hoursat4mph,soshewalked6miles.Thereforeshecoveredatotalof14milesin2hours,soheraveragespeedwas7mph.5.Answer(D):Afterpayingthefederaltaxes,Mr.Publichad80%ofhisinheritancemoneyleft.Hepaid10%ofthat,or8%ofhisinheritance,instatetaxes.Hencehistotaltaxbillwas28%ofhisinheritance,andhisinheritancewas$10,500/0.28=$37,500.6.Answer(D):Because󰀆ABCisisosceles,∠BAC=

1

(180◦−∠ABC)=70◦.2

B

40DA

Similarly,

∠DAC=

140C

1

(180◦−∠ADC)=20◦.2

Thus∠BAD=∠BAC−∠DAC=50◦.

OR

Because󰀆ABCand󰀆ADCareisoscelestriangles,applyingtheExteriorAngleTheoremto󰀆ABDgives∠BAD=70◦−20◦=50◦.

Solutions2007

58thAMC12A

3

7.Answer(C):LetDbethedifferencebetweenconsecutivetermsofthese-quence.Thena=c−2D,b=c−D,d=c+D,ande=c+2D,so

a+b+c+d+e=(c−2D)+(c−D)+c+(c+D)+(c+2D)=5c.Thus5c=30,soc=6.

Toseethatthevaluesoftheothertermscannotbefound,notethatthese-quences4,5,6,7,8and10,8,6,4,2bothsatisfythegivenconditions.

8.Answer(C):Considerthetwochordswithanendpointat5.Thearcsub-tendedbytheangledeterminedbythesechordsextendsfrom10to12,sothedegreemeasureofthearcis(2/12)(360)=60.BytheCentralAngleTheorem,thedegreemeasureofthisangleis(1/2)(60)=30.Bysymmetry,thedegreemeasureoftheangleateachvertexis30.9.Answer(B):LetwbeYan’swalkingspeed,andletxandybethedistancesfromYantohishomeandtothestadium,respectively.ThetimerequiredforYantowalktothestadiumisy/w,andthetimerequiredforhimtowalkhomeisx/w.Becauseherideshisbicycleataspeedof7w,thetimerequiredforhimtoridehisbicyclefromhishometothestadiumis(x+y)/(7w).Thus

yxx+y8x+y=+=.ww7w7w

Asaconsequence,7y=8x+y,so8x=6y.Therequiredratioisx/y=6/8=

3/4.

OR

Becauseweareinterestedonlyintheratioofthedistances,wemayassumethatthedistancefromYan’shometothestadiumis1mile.Letxbehispresentdistancefromhishome.ImaginethatYanhasatwin,Nay.WhileYanwalkstothestadium,Naywalkstotheirhomeandcontinues1/7ofamilepasttheirhome.Becausewalking1/7ofamilerequiresthesameamountoftimeasriding1mile,YanandNaywillcompletetheirtripsatthesametime.Yanhaswalked

1

1−xmileswhileNayhaswalkedx+7miles,so1−x=x+17.Thusx=3/7,1−x=4/7,andtherequiredratioisx/(1−x)=3/4.

10.Answer(A):Letthesidesofthetrianglehavelengths3x,4x,and5x.The

triangleisarighttriangle,soitshypotenuseisadiameterofthecircle.Thus5x=2·3=6,sox=6/5.Theareaofthetriangleis

111824216·3x·4x=··==8..225525

OR

Solutions2007

58thAMC12A

4

Arighttrianglewithsidelengths3,4,and5hasarea(1/2)(3)(4)=6.Becausethegivenrighttriangleisinscribedinacirclewithdiameter6,thehypotenuseofthistrianglehaslength6.Thusthesidesofthegiventriangleare6/5aslongasthoseofa3–4–5triangle,anditsareais(6/5)2timesthatofa3–4–5triangle.Theareaofthegiventriangleis

󰀄󰀅26216

(6)==8..525

11.Answer(D):Agivendigitappearsasthehundredsdigit,thetensdigit,and

theunitsdigitofatermthesamenumberoftimes.Letkbethesumoftheunitsdigitsinalltheterms.ThenS=111k=3·37k,soSmustbedivisibleby37.ToseethatSneednotbedivisiblebyanylargerprime,notethatthesequence123,231,312givesS=666=2·32·37.12.Answer(E):Thenumberad−bcisevenifandonlyifadandbcareboth

oddorarebotheven.Eachofadandbcisoddifbothofitsfactorsareodd,andevenotherwise.Exactlyhalfoftheintegersfrom0to2007areodd,soeachofadandbcisoddwithprobability(1/2)·(1/2)=1/4andareevenwithprobability3/4.Hencetheprobabilitythatad−bcisevenis

11335·+·=.44448

13.Answer(B):Thepoint(a,b)isthefootoftheperpendicularfrom(12,10)

totheliney=−5x+18.Theperpendicularhasslope15,soitsequationis

1138

y=10+(x−12)=x+.

555

Thex-coordinateatthefootoftheperpendicularsatisfiestheequation

138x+=−5x+18,55

sox=2andy=−5·2+18=8.Thus(a,b)=(2,8),anda+b=10.

OR

Ifthemouseisat(x,y)=(x,18−5x),thenthesquareofthedistancefromthe

mousetothecheeseis

󰀋󰀁󰀋󰀁

(x−12)2+(8−5x)2=26x2−4x+8=26(x−2)2+4.Thevalueofthisexpressionissmallestwhenx=2,sothemouseisclosesttothecheeseatthepoint(2,8),anda+b=2+8=10.

Solutions2007

58thAMC12A

5

14.Answer(C):If45isexpressedasaproductoffivedistinctintegerfactors,

theabsolutevalueoftheproductofanyfourisatleast|(−3)(−1)(1)(3)|=9,sonofactorcanhaveanabsolutevaluegreaterthan5.Thusthefactorsofthegivenexpressionarefiveoftheintegers±1,±3,and±5.Theproductofallsixoftheseis−225=(−5)(45),sothefactorsare−3,−1,1,3,and5.Thecorrespondingvaluesofa,b,c,d,andeare9,7,5,3,and1,andtheirsumis25.15.Answer(E):Themeanoftheaugmentedsetis(28+n)/5.Ifn<6,the

medianofthatsetis6,so28+n=5·6,andn=2.If69,themedianis9,so28+n=5·9,andn=17.Thusthesumofallpossiblevaluesofnis2+7+17=26.16.Answer(C):Thesetofthethreedigitsofsuchanumbercanbearrangedto

formanincreasingarithmeticsequence.Thereare8possiblesequenceswithacommondifferenceof1,sincethefirsttermcanbeanyofthedigits0through7.Thereare6possiblesequenceswithacommondifferenceof2,4withacommondifferenceof3,and2withacommondifferenceof4.Hencethereare20possiblearithmeticsequences.Eachofthe4setsthatcontain0canbearrangedtoform2·2!=4differentnumbers,andthe16setsthatdonotcontain0canbearrangedtoform3!=6differentnumbers.Thusthereareatotalof4·4+16·6=112numberswiththerequiredproperties.17.Answer(B):Squarebothsidesofbothgivenequationstoobtain

sin2a+2sinasinb+sin2b=5/3and

cos2a+2cosacosb+cos2b=1.

Thenaddcorrespondingsidesoftheresultingequationstoobtain

󰀋

󰀁󰀋󰀁8

sin2a+cos2a+sin2b+cos2b+2(sinasinb+cosacosb)=.

3

Becausesin2a+cos2a=sin2b+cos2b=1,itfollowsthat

cos(a−b)=sinasinb+cosacosb=

1.3

Oneorderedpair(a,b)thatsatisfiesthegivenconditionisapproximately(0.296,1.527).

18.Answer(D):Becausef(x)hasrealcoefficientsand2iand2+iarezeros,so

aretheirconjugates−2iand2−i.Therefore

f(x)=(x+2i)(x−2i)(x−(2+i))(x−(2−i))=(x2+4)(x2−4x+5)

=x4−4x3+9x2−16x+20.

Hencea+b+c+d=−4+9−16+20=9.

Solutions2007

OR

58thAMC12A

6

Asinthefirstsolution,

f(x)=(x+2i)(x−2i)(x−(2+i))(x−(2−i)),

so

a+b+c+d=f(1)−1=(1+2i)(1−2i)(−1−i)(−1+i)−1=(1+4)(1+1)−1=9.19.Answer(E):LethbethelengthofthealtitudefromAin󰀆ABC.Then

11

·BC·h=·223·h,22

soh=18.ThusAisononeofthelinesy=18ory=−18.LineDEhasequationx−y−300=0.LetAhavecoordinates(a,b).Bytheformulafor√thedistancefromapointtoaline,thedistancefromAtolineDEis|a−b−300|/2.Theareaof󰀆ADEis

2007=

7002=

1|a−b−300|1|a±18−300|√

√√··DE=··92.2222Thusa=±18±1556+300,andthesumofthefourpossiblevaluesofais

4·300=1200.

OR

Asabove,concludethatAisononeofthelinesy=±18.Bysimilarreasoning,Aisononeoftwoparticularlinesl1andl2paralleltoDE.ThereforetherearefourpossiblepositionsforA,determinedbytheintersectionsofthelinesy=18andy=−18witheachofl1andl2.Lettheliney=18intersectl1andl2inpoints(x1,y1)and(x2,y2),andlettheliney=−18intersectl1andl2inpoints(x3,y3)and(x4,y4).Thefourpointsofintersectionaretheverticesofaparallelogram,andthecenteroftheparallelogramhasx-coordinate(1/4)(x1+x2+x3+x4).Thecenteristheintersectionoftheliney=0andlineDE.BecauselineDEhasequationy=x−300,thecenteroftheparallelogramis(300,0).Thusthesumofallpossiblex-coordinatesofAis4·300=1200.

20.Answer(B):Removingthecornersremovestwosegmentsofequallength

fromeachx.Then√edgeofthecube.Callthatlength󰀋√󰀁eachoctagonhassidelength2x,andthecubehasedgelength1=2+2x,so

√2−21

√=x=.

22+2Eachremovedcornerisatetrahedronwhosealtitudeisxandwhosebaseisan

isoscelesrighttrianglewithleglengthx.Thusthetotalvolumeoftheeighttetrahedrais√

√󰀃31121󰀂10−728··x·x=2−2=.3263

Solutions2007

58thAMC12A

7

21.Answer(A):Theproductofthezerosoffisc/a,andthesumofthezeros

is−b/a.Becausethesetwonumbersareequal,c=−b,andthesumofthecoefficientsisa+b+c=a,whichisthecoefficientofx2.Toseethatnoneofthe√otherchoicesiscorrect,letf(x)=−2x2−4x+4.Thezerosoffare−1±3,sothesumofthezeros,theproductofthezeros,andthesumofthecoefficientsareall−2.However,thecoefficientofxis−4,they-interceptis4,√

thex-interceptsare−1±3,andthemeanofthex-interceptsis−1.22.Answer(D):Ifn≤2007,thenS(n)≤S(1999)=28.Ifn≤28,then

S(n)≤S(28)=10.Thereforeifnsatisfiestherequiredconditionitmustalsosatisfy

n≥2007−28−10=1969.

Inaddition,n,S(n),andS(S(n))allleavethesameremainderwhendividedby9.Because2007isamultipleof9,itfollowsthatn,S(n),andS(S(n))mustallbemultiplesof3.Therequiredconditionissatisfiedby4multiplesof3between1969and2007,namely1977,1980,1983,and2001.

Note:Thereappeartobemanycasestocheck,thatis,allthemultiplesof3between1969and2007.However,for1987≤n≤1999,wehaven+S(n)≥1990+19=2009,sothesenumbersareeliminated.Thusweneedonlycheck1971,1974,1977,1980,1983,1986,2001,and2004.

23.Answer(A):LetA=(p,logap)andB=(q,2logaq).ThenAB=6=

|p−q|.BecauseABishorizontal,logap=2logaq=logaq2,sop=q2.Thus|q2−q|=6,andtheonlypositivesolutionisq=3.NotethatC=(q,3logaq),√66

soBC=6=logaq,fromwhicha=q=3anda=3.24.Answer(D):NotethatF(n)isthenumberofpointsatwhichthegraphs

ofy=sinxandy=sinnxintersecton[0,π].Foreachn,sinnx≥0oneachinterval[(2k−2)π/n,(2k−1)π/n]wherekisapositiveintegerand2k−1≤n.Thenumberofsuchintervalsisn/2ifnisevenand(n+1)/2ifnisodd.Thegraphsintersecttwiceoneachintervalunlesssinx=1=sinnxatsomepointintheinterval,inwhichcasethegraphsintersectonce.Thislastequationissatisfiedifandonlyifn≡1(mod4)andtheintervalcontainsπ/2.Ifniseven,thiscountdoesnotincludethepointofintersectionat(π,0).ThereforeF(n)=2(n/2)+1=n+1ifniseven,F(n)=2(n+1)/2=n+1ifn≡3(mod4),andF(n)=nifn≡1(mod4).Hence

󰀈2007󰀉󰀆󰀇2007󰀊󰀊2007−1(2006)(3+2008)

F(n)=(n+1)−=−501=2,016,532.

42n=2n=2

Solutions2007

58thAMC12A

8

25.Answer(E):Foreachpositiveintegern,letSn={k:1≤k≤n},andlet

cnbethenumberofspacysubsetsofSn.Thenc1=2,c2=3,andc3=4.Forn≥4,thespacysubsetsofSncanbepartitionedintotwotypes:thosethatcontainnandthosethatdonot.ThosethatdonotcontainnarepreciselythespacysubsetsofSn−1.Thosethatcontainndonotcontaineithern−1orn−2andarethereforeinone-to-onecorrespondencewiththespacysubsetsofSn−3.Itfollowsthatcn=cn−3+cn−1.Thusthefirsttwelvetermsinthesequence(cn)are2,3,4,6,9,13,19,28,41,60,88,129,andtherearec12=129spacysubsetsofS12.

OR

NotethateachspacysubsetofS12containsatmost4elements.Foreachsuchsubseta1,a2,...,ak,letb1=a1−1,bj=aj−aj−1−3for2≤j≤k,andbk+1=12−ak.Thenbj≥0for1≤j≤k+1,and

b1+b2+···+bk+1=12−1−3(k−1)=14−3k.

󰀋2k󰀁

Thenumberofsolutionsfor(b1,b2,...,bk+1)is14−for0≤k≤4,sotheknumberofspacysubsetsofS12is

󰀄󰀅󰀄󰀅󰀄󰀅󰀄󰀅󰀄󰀅14121086

++++=1+12+45+56+15=129.01234

The

American Mathematics Competitions

are Sponsored by

The Mathematical Association of AmericaThe Akamai FoundationContributorsAmerican Mathematical Association of Two Year CollegesAmerican Mathematical SocietyAmerican Society of Pension Actuaries American Statistical AssociationArt of Problem SolvingAwesome MathCanada/USA Mathcamp Canada/USA MathpathCasualty Actuarial SocietyClay Mathematics InstituteInstitute for Operations Research and the Management SciencesL. G. Balfour CompanyMu Alpha ThetaNational Assessment & TestingNational Council of Teachers of MathematicsPedagoguery Software Inc.Pi Mu Epsilon Society of ActuariesU.S.A. Math Talent SearchW. H. Freeman and CompanyWolfram Research Inc.

因篇幅问题不能全部显示,请点此查看更多更全内容